
Waqas Bhatti
05/22/2008

M Dwarf Eclipsing Binary Candidates from 
the SDSS-II Supernova Survey



2

Collaborators and Co-conspirators

● Johns Hopkins University

– Holland Ford
– Justin Rogers
– Emma Marcucci

● Space Telescope Science Institute

– Larry Petro
● Rochester Institute of Technology

– Michael Richmond
● Various unsuspecting ACS workstations I've run my pipeline on...



3

Outline
● Stellar Populations and M Dwarfs

● Eclipsing Binaries

● SDSS-II SN Survey

● Data Reduction

– Cleanup

– Selecting Targets

– Problems

– Ensemble Photometry

● Finding Variable Objects

● Identified M Dwarf Binary Candidates

● Work in Progress

● Future Work



4

M Dwarfs: Stellar Populations
● Stars classified by spectral 

features

– Roughly by temperature
● On the main sequence (dwarf 

stars):

– O & B stars: young, high 
mass stars, hot, blue

– A & F stars: high mass, white 
stars

– G & K stars: yellow, solar 
mass, solar age

– M stars: red, low 
temperature, low mass, 
highly active, long-lived stars

Figure from Kaufmann & Freedman, 
Universe (6e), W. H. Freeman, 2001
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M Dwarfs: Low Mass Stars

● Long lived stars
– Take a long time to get to the main sequence (0.04 – 0.7 

Gyr)
– Burn H slowly: live on the main sequence practically 

forever
● By number, most common type of star in the Galaxy

– Low temperatures: 2,500 – 4,000 K (photosphere)
– Low mass (0.1 – 0.6 Msun)
– Small radius

● Intrinsically faint
● Hard to see
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M Dwarfs: Theory vs. Observations
● Properties under study:

– Mass, radius, luminosity

– Temperature, metallicity, 
age

● Problems:

– Underestimate radii by ~ 
10% (obs err ~ 3%)

– Overestimate temperature 
by ~ 5%

– Mass-luminosity relation 
has high scatter

– Need to explain high stellar 
activity

Figure from Ribas, 2006, ASP Conf. Ser., Vol. 999
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Eclipsing Binaries: Why Bother? 

● Observe via photometry and spectroscopy
● Photometric monitoring:

– Gives relative radii of stars (primary & secondary eclipse)
– Gives period of orbit
– Gives relative luminosities, temperatures

● Spectroscopic observation:
– Gives the period of the orbit, get semimajor axes
– Gives masses of stars
– Gives metallicity
– Gives age and activity indicators
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Eclipsing Binaries: Expected Numbers – I
● Expected number of detected M dwarf binaries is a function of:

– Number of stars surveyed

– Fraction of these that are M dwarfs

– Fraction of these that are binary stars

– Distribution of binary periods (and semimajor axes)
● We're looking for short period binaries

– Fraction of these binary systems that are geometrically favorable 
for eclipses

– Fraction of these that can be detected given our temporal sampling

– Fraction of these that are bright enough to be above our detection 
threshold and don't get lost somewhere in the data

N det=N stars f Mstars f binary P  f geom f window f threshold
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● Detailed Monte Carlo simulations give better estimates

– We'll do a rough estimation instead (likely very optimistic)
● Nstars: estimate from number of stars we have in the survey

– ~ 900,000 total stars
● Fraction of M stars: again, estimate from the survey

– Color selection gives ~ 520,000 M stars = fraction = 0.59
● Total binary fraction: look at what people have found

– ~ 35% of mid M dwarfs have binaries (Henry & McCarthy 1990)

– ~ 10% of late M dwarfs have binaries (Bouy, Gizis 2003)

– We'll say 25% of all M dwarfs have a binary companion
● Need to modify this by looking at distribution with period

Eclipsing Binaries: Expected Numbers – II

N det=N stars f Mstars f binary P  f geom f window f threshold
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Eclipsing Binaries: Expected Numbers – III

● Distribution of binaries by period:

– Surveys of clusters show more binaries at shorter periods (Yan & 
Mateo 2003)

– Distribution follows:

– Concentrate on binaries with periods of 2.5 days to 7 days

– 2.2% of M dwarfs are binaries with these periods
● Use this binary fraction

● Fraction of these binaries that are geometrically favorable for eclipses:

– Combine with window function & do Monte Carlo simulations
● ~ 7% of binaries with the above periods are favorable

● Say we can detect 10%

df
d log P

=0

N det=N stars f Mstars f binary P  f geom f window f threshold

Expected # of M dwarf binaries ≈ 80
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● Northern sky photometric (& spectroscopic) survey

– Five bands (u, g, r, i,z) 
– 2.5-m wide-field telescope & camera at APO, New Mexico
– Deep (22.0, 22.2, 22.2, 21.3, 20.5)
– Uniform reduction and calibration (mostly)
– Good precision (around 2-3%)
– Completed in 2004 (but still releasing data)
– Currently ~ 9,500 sq deg of coverage (photometric)
– All available via SQL & other fun tools at http://cas.sdss.org

SDSS-II SN Survey: Overview

Images from http://www.sdss.org/dr6/

http://cas.sdss.org/
http://www.sdss.org/dr6/


12

SDSS-II SN Survey: Stripe 82
● SDSS catalogs are mostly 

single-epoch

– Need time-series 
photometry for variability 
studies

● SDSS-II Supernova Survey 
(2004-2007)

– Survey 300 sq deg of sky

– Repeated scans
● 3 seasons
● ~ 60 nights per season
● 2/3 nights between 

observations
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The Data: SN Survey Products
● Supernova Survey data not accessible via the SDSS database server

– Go to the source (FNAL) and download photometric catalogs

– ~ 600 GB data per season
● Photometric catalogs in binary FITS tables:

– One night of data = one run:
● Continuous scan across the entire sky (sometimes partial)
● Several hundred fields (13' x 10')
● Each field has about 2,000 objects
● Stars + galaxies + junk all included

– Information for each object:
● Position (ra, dec) + unique object identifiers
● Photometry (magnitudes in all five bands)
● Data quality flags + night photometric quality flags
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The Data: Reduction Pipeline

Clean up 
catalogs

Reject bad 
objects

Reject bad 
fields

Extract 
stars from 

catalog
Enforce 

magnitude 
limit
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objects 

across runs 
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info

Ensemble 
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to detect 
variability
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variables

Variability 
analysis

Light-curve 
generation
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from SDSS 
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runs

Good 
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catalog

Organized
by run
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position 

information

Organized 
by run

Catalog of 
matched 
objects

Match 
Bundles

Star photo 
information

Organized
by run

Combine 
photo and 
position 
info of 

matched 
objects

Catalog of 
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objects and 
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dwarfs by 

color
Eclipsing 

binary 
candidates
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The Data: Selecting M Dwarfs

● Use color cuts to find probable M dwarfs

– Based on spectra of already observed 
M dwarfs in the SDSS

– Sloan r-i color and i-z color are good

● Anything redder than r-i = 0.67 and i-z = 
0.37 is probably an M star

– Enforce a bright limit to keep out 
nearby stars

– Can also use proper motions to select 
foreground objects

Table from West, et al., 2005, PASP, 117, 706
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The Data: Problems

● Photometric uniformity
– Not as nice as we had hoped
– Optimized for detection of SNe

● Lowered standards for seeing, sky brightness
● Hard to make light-curves out of raw SDSS measurements
● Systematic effects over time

● Temporal uniformity
– Inconsistent cadence

● Return to each field every 2 or 3 nights (or a week later)
● Continuous monitoring not possible
● Hard to detect periodic variability over this kind of baseline
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Ensemble Photometry – I
● Try to remove systematic variations from night to night

● Use ensemble photometry

– Scaled up version of differential photometry

– Uses many comparison stars
● Ensemble photometry

– Pick a star and find all neighbors that were observed on the same 
night in the same field

– Calculate an ensemble average magnitude using neighbors
● Do this for each band separately
● Try to select neighbors carefully

– Subtract ensemble average from target magnitude

– Resulting differential magnitude for target excludes systematic 
effects for the observed field
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Ensemble Photometry – II

● Works fairly well
– Removes most systematic effects
– Reduces scatter in raw SDSS light-curves
– Should make detecting variable objects easier

● Removes much of the false variability
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Variability: Stage 1

● Need to make sure our candidate objects are actually 
variable

– Put them through a three-stage process
– Anything that survives all three stages is a good object to 

look at closely
● Stage 1: pick out obvious variables on an error vs. mag plot

– Plot object light-curve rms vs. object average mag
– Highly variable objects have high rms

● Spend most of their time away from the average
● Have many frequent large deviations from the 

average
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Variability: Stage 2

● Variability tags from ensemble photometry
– Anything that has a deviation > 2 sigma in the r, i, and z 

bands simultaneously
● Ensures whatever happened is not a filter artifact

– Ignore anything that looks variable but is actually one of 
the faintest objects in the field

● Ensemble stage gets confused between actual variability and 
photometric noise for faint sources

– Sanity check needed
● See if ensemble stage has enough neighbors to work with
● See if neighbors were actually used in the solution
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Variability: Stage 3

● Need to find periodic variables

– Constrain periods from sparsely sampled light-curves
– Unrealistic to expect many eclipsing events

● Require three eclipse events in a differential light-curve, 
seen simultaneously in r, i, and z band

– Period constrained to the longest duration between two 
of these events

– Better if three events with equal spacing in between
● These will be very rare



22

Candidates – I
● MB6663

– M3 dwarf

– SDSS g average mag = 19.56

– SDSS z average mag = 17.67

– 12 observations

– Tagged as variable by 
ensemble photo

– 2 possible events, in riz bands

● Need a third one to confirm 
variability
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● MB6785

– M1 dwarf

– SDSS g average mag = 19.45

– SDSS z average mag = 18.02

– 17 observations

– Tagged as variable by 
ensemble photo

– 2 possible events again, in riz 
bands

● Still need a third one to say 
anything about the period

Candidates – II
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Candidates – III
● MB13892

● M0 dwarf

● SDSS g average mag = 20.18

● SDSS z average mag = 19.09

● 20 observations

● 3 possible events in riz bands

– Closely spaced in time

– An actual candidate?

● Warrants photometric 
monitoring

● Too faint for spectra
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Other Variables – A Flare Star
● MB19411

– M5 dwarf

– SDSS g mag = 21.89

– SDSS z mag = 19.02

– 15 observations

– Big increase in brightness

● Happens once in the light-
curve

● Later M dwarfs are more 
active

● Something to keep an eye 
on
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Work in Progress
● Understand the M dwarf binary fraction

– Look at open clusters

– Try to obtain the binary fraction in several clusters and nail down 
the expected value for stars in our survey

● Understand the window function

– See how the time-sampling of observations affects our ability to 
detect transits

– Monte Carlo simulations
● Figure out how many M dwarfs we expect

– How does the number we have in our survey compare to 
predictions from Galaxy models?

● Understand our detection threshold

– Given our photometric precision, can we expect to see anything at 
all?
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Future Work

● Once we have several robust candidates:
– Spectroscopic follow-up

● Nails down period, type of variable, type of stars
● Can derive masses
● May be difficult for our fainter targets

– Photometric monitoring
● High cadence photometry gives detailed eclipse information
● Obtain radii, luminosities, temperatures

● Connect these observed parameters to models
– See if we can improve mass-radius, luminosity-mass 

relations
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Yes, but what about those planets?!
● M dwarfs are low mass stars

– Protoplanetary disk also has low mass

– Forms giant planets with masses & radii << those of Jupiter, etc.

– Expect more Neptune class planets around M dwarfs
● Jupiter transit depth around M4 dwarf ~ 8%

● Neptune transit depth around M4 dwarf ~ 1%

● 1% drop in flux from a star is hard to see using our survey data

● Numbers say there should be ~ 10 Jupiter class planets in our dataset

– We're probably not good enough to get them

– Need better calibrated photometry and a better time-sampling of 
observations

– Still, worth a try (only after we've found M dwarf eclipsing binaries)
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Conclusions

● Our knowledge of low mass stars, especially M dwarfs, can be 
improved by looking at eclipsing binaries.

● Using large sky surveys (like SDSS) gives us many targets to 
look at.

– Needed because statistics don't favor detecting these 
systems.

● Going from detection to characterizing variability is hard.

– Need multiple methods of confirming variability and 
periodicity.

– Confirming periodic variables as eclipsing binaries requires 
photometric and spectroscopic follow-up.


